24小时故障咨询电话 点击右边热线,在线解答故障拨打:400-189-9291
创维洗衣机(全国统一400预约热线)24小时维修服务电话_光合生物如何适应进化?中国团队破解高效捕获利用光能分子机制

创维洗衣机(全国统一400预约热线)24小时维修服务电话

全国报修热线:400-189-9291

更新时间:

创维洗衣机维修售后中心热线







创维洗衣机(全国统一400预约热线)24小时维修服务电话:(1)400-189-9291(点击咨询)(2)400-189-9291(点击咨询)









创维洗衣机总部统一400电话(1)400-189-9291(点击咨询)(2)400-189-9291(点击咨询)





创维洗衣机售后维修电话(全国400)服务受理中心

创维洗衣机24小时服务电话|全国统一400售后热线









原厂配件保障:使用原厂直供的配件,品质有保障。所有更换的配件均享有原厂保修服务,保修期限与您设备的原保修期限相同或按原厂规定执行。




创维洗衣机售后服务维修24小时电话/总部400号码统一客服热线









创维洗衣机{搜马_随机key2关键词}

 周口市太康县、上海市金山区、宁夏石嘴山市大武口区、内蒙古阿拉善盟额济纳旗、吉安市万安县、滨州市邹平市





三亚市吉阳区、日照市岚山区、文山文山市、吉安市新干县、扬州市宝应县、杭州市萧山区、宁夏银川市兴庆区、随州市曾都区、楚雄楚雄市









遵义市习水县、上饶市弋阳县、徐州市铜山区、郑州市新密市、衢州市龙游县、眉山市仁寿县、佳木斯市桦川县









菏泽市郓城县、新乡市延津县、宜昌市远安县、苏州市姑苏区、河源市东源县、哈尔滨市阿城区、昌江黎族自治县十月田镇、大同市云冈区









双鸭山市尖山区、黄山市徽州区、湘潭市韶山市、屯昌县南吕镇、大理剑川县、丽水市青田县、宜春市靖安县、天津市宝坻区、屯昌县西昌镇









吉安市万安县、常德市石门县、驻马店市遂平县、兰州市安宁区、昭通市绥江县、宣城市宣州区、忻州市岢岚县









庆阳市环县、延安市洛川县、广西柳州市城中区、驻马店市汝南县、宜宾市翠屏区、泸州市纳溪区、文山麻栗坡县









乐山市犍为县、温州市鹿城区、内蒙古乌兰察布市丰镇市、重庆市大足区、丽水市云和县、儋州市那大镇、乐山市马边彝族自治县、益阳市沅江市









铜陵市郊区、沈阳市沈河区、厦门市集美区、内蒙古锡林郭勒盟多伦县、丽水市松阳县









昭通市鲁甸县、凉山会东县、上海市青浦区、宜昌市枝江市、吉安市庐陵新区









内蒙古呼和浩特市托克托县、内蒙古呼和浩特市玉泉区、嘉峪关市峪泉镇、红河元阳县、儋州市兰洋镇、广西玉林市容县、七台河市勃利县









朔州市平鲁区、成都市锦江区、广西百色市右江区、屯昌县乌坡镇、成都市青羊区、哈尔滨市木兰县、肇庆市端州区、娄底市新化县、吕梁市孝义市、随州市曾都区









黄南河南蒙古族自治县、十堰市张湾区、昭通市水富市、焦作市中站区、鹤壁市浚县、万宁市万城镇、江门市恩平市、白沙黎族自治县南开乡









丹东市振安区、迪庆维西傈僳族自治县、遵义市习水县、保山市施甸县、乐山市犍为县、咸阳市杨陵区、临沧市凤庆县、鹤壁市淇县









大庆市萨尔图区、直辖县仙桃市、白沙黎族自治县细水乡、深圳市福田区、绍兴市越城区









中山市横栏镇、平凉市庄浪县、南平市政和县、湛江市赤坎区、绵阳市涪城区









临汾市襄汾县、乐山市马边彝族自治县、开封市通许县、昌江黎族自治县乌烈镇、宁夏中卫市沙坡头区、广西梧州市蒙山县、甘孜泸定县、咸阳市旬邑县

光合生物如何适应进化?中国团队破解高效捕获利用光能分子机制

  中新网北京9月12日电 (记者 孙自法)作为海洋中主要浮游植物之一,颗石藻能适应海水不同深度的多变光环境,高效的光合自养生长可助其快速繁殖,但颗石藻光系统复合物如何能高效捕获和利用光能的微观机理及进化机制,此前并不清楚,也备受关注。

  来自中国科学院的消息说,中国科学家团队最近在光合生物适应进化研究中取得一项重大发现:首次在原子层面揭示颗石藻通过扩展和优化其光系统结构来适应海洋光环境的独特策略,成功破解了颗石藻光系统复合物高效利用光能的分子机制。

颗石藻光系统I-捕光天线超大复合物结构及其能量转化效率示意图。中国科学院植物研究所 供图

  这项重要研究突破由中国科学院植物研究所王文达研究员、田利金研究员带领团队完成,他们首次纯化并解析来自赫氏艾米里颗石藻的光系统I-岩藻黄素叶绿素a/c结合蛋白(PSI-FCPI)超级复合物三维结构,破解了光合生物适应进化的分子机制。北京时间9月12日凌晨,该研究成果论文以封面形式在国际知名学术期刊《科学》上线发表。

  王文达表示,颗石藻光系统复合物的结构解析和机理研究,为理解光合生物高效的能量转化机制提供了新的结构模型。未来,研究团队也希望以此为基础设计新型光合作用蛋白,并进一步指导人工模拟和开发高碳汇生物资源,这在合成生物学和气候变化应对领域,都具有巨大潜力。

  田利金介绍说,颗石藻PSI-FCPI超级复合物是一个巨大光合膜蛋白机器,由51个蛋白亚基和819个色素分子组成,分子量高达1.66兆道尔顿,远超已知的真核生物光系统I捕光天线复合物。它的捕光截面是典型陆地植物(豌豆)光系统I超级复合物的4至5倍。飞秒瞬态吸收光谱结果表明,颗石藻PSI-FCPI捕获光能的量子转化效率超过95%,与陆地植物光系统I超级复合物效率相当,说明颗石藻PSI-FCPI具备特殊的蛋白组装和能量传递特征。

  此次研究发现,颗石藻的光系统I核心周围环绕着38个岩藻黄素叶绿素a/c结合蛋白捕光天线,并以模块化的方式排列成8个放射状排布的捕光天线条带。这种“旋涡围绕”光系统I核心的巨型捕光天线依靠大量新型捕光天线的精密装配,极大扩展了捕光面积。

  研究团队还鉴定到丰富的叶绿素c和岩藻黄素类型的类胡萝卜素,这些色素在新发现的捕光天线中含量极高,使其能有效吸收深水区波长在460-540纳米间的蓝绿光和绿光。此外,大量叶绿素c与叶绿素a形成紧密的能量耦联并消除能量陷阱,构成平坦畅通的能量传递网络,这可能是其保持超高量子转化效率的关键。

  据了解,颗石藻细胞壁是由碳酸钙晶体组成的颗石片,其在白垩纪达到鼎盛,不仅是海洋初级生产力的主要贡献者,还依靠其碳酸钙外壳在地层中留下显著的“白垩”痕迹,因此在海洋碳沉积和全球碳循环中扮演重要角色。(完)

【编辑:李润泽】
相关推荐: